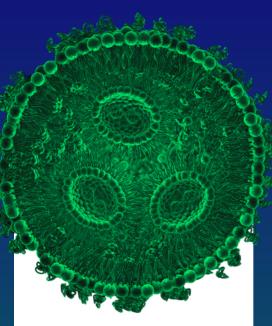

Lipid Formulation Morphologies


Liposomes

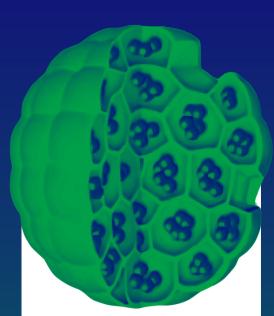
- Liposome is a general term for vesicles that are formed by a lipid bilayer and that contain an aqueous core.
- Materials can be loaded either into the aqueous core of the liposome (hydrophilic) or into the lipid bilayer (hydrophobic).

Micelles

- Micelles have
 hydrophilic head
 region in contact with
 the polar solvent and
 the hydrophobic tail
 region sequestered
 away from the solvent.
- Micelles have a solid lipid core, which can be used to sequester hydrophobic APIs.
- Micelles are usually formed by single-chain lipids or lipids with large headgroups due to lipid geometry and the high curvature of micelles.

LNPs

- LNP specifically refers to solidcore lipid nanoparticles encasing nucleic acid materials
- LNPs are typically made using solvent injection.


Multilamellar

 Multilamellar vesicles have many lamellae (or bilayers). Think of an onion! These are generally in the 1-5um size range. The benefit to MLVs is that you can typically have a higher drug concentration because you can pack drug into the aqueous layer between each bilayer.

GUVs

• GUVs, or Giant Unilamellar Vesicles. are microns-scale vesicles that have a single bilayer. Primarily used to observe lipid phase behavior and membrane events (fusion, fission) in synthetic biology with fluorescence microscopy. Methods of preparation: swelling, electroformation

MVLs

MVLs, or
 Multivesicular
 liposomes, are
 large spherical
 vesicles with
 smaller polygon shaped
 compartments,
 each containing
 API. These vesicles
 offer benefits such
 as increased drug
 loading, sustained
 release, and
 prolonged efficacy.